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The Tilted-Ellipse Representation of Standing-Wave Patterns.
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Research & Development Inc.
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Abstract.
A recently introduced, new computer-simulation method provides a fast and inexpensive way for obtaining

the multi-dimensional scattering matrices of even very large-scale, multiport microwave systems. The new
method simulates measurements of multidimensional, complex scattering matrices, that could only be
performed using a very large and expensive multiport Vector Network Analyzer (VANA). Calibrated
measurements of complex scattering matrices of any arbitrary size may be simulated by using any available
frequency-domain 2D or 3D Maxwell-field solver, provided the solver used can compute the complex values of
EM fields, within a given bounded domain. Scattering-matrix measurements, that would require an
inpractically-large and expensive multiport Vector Network Analyzer (VANA) , can be simulated by first
computing the electromagnetic field-distributions, within both the multiport microwave system under simulated
test (the virtual DUT or V-DUT), and within the inner regions of a set of simulated virtual measurement-lines
(V-ML), with each line being connected to a different V-DUT port.

The simulation of multidimensional, complex scattering-matrix measurements is based on the results of a
rigorous mathematical analysis of the simultaneous propagation of forward and backward waves along the
virtual measurement lines. This rigorous analysis has shown that the mutual correlation between the imaginary
components, and the real components of the standing-wave fields, along the length of each measurement-line,
can be quantitatively represented by the parametric equations of a tilted-ellipse, centered on the origin of a 2D
planar, Cartesian reference-frame.

1. Objective.
This paper shows how the geometric parameters, of the tilted-ellipse representation of the standing-wave

pattern along each virtual line, may be used to compute the magnitudes and the phases of the forward-wave and
backward-wave vectors, at any arbitrary point along each of the virtual measurement-lines that is simulated as
being connected to one of the various V-DUT ports. In this tilted-ellipse representation, the imaginary
components VI of the standing-wave fields, computed by the solver along the z-axes of the simulated

measurement lines, are displayed along the ordinate-axis ζ of a 2D ( ξ , ζ ) planar-Cartesian reference-frame,

while the corresponding real components VR  are displayed along the reference-frame abscissa-axis ξ .
The mathematical results of the previously reported rigorous analysis of the simultaneous propagationof the

forward and backward waves [1], express the complex values of the forward-wave vectors VF ( z ) , and
backward-wave vectors VB ( z ) , as functions of the distance z from each V-DUT system port.

Those rigorous expressions provide a new way of extracting the complex values of both the forward-wave
and the backward-wave vectors, from the standing-wave field-patterns computed by the EM solver used, along
each of the virtual measurement-lines.
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The new scattering-matrix measurement-simulation method performs therefore the very same wave-
extraction function that, in an actual experimental measurement session, would require the use of a Vector-
Reflectometer, composed of two appropriately-oriented Directional Couplers and of a Vector-Voltmeter.

The complex values of the forward-wave and backward-wave vectors so extracted may then be mutually
correlated, by computing complex wave-correlation ratios ΓΓΓΓ( z ) between each forward-wave vector VF ( z )
and the corresponding backward-wave vector VB ( z ) , when those two vectors propagate on the same virtual

measurement-line line. Similarly,  line-to-line wave-correlation ratios ΓΓΓΓi j ( z ) may be computed as the ratios
of a backward-wave vector VB i ( z ) , that propagates on virtual measurement-line line i , to a forward-wave
vector VF j ( z ) , that propagates on a different virtual measurement-line line j .

The complex wave-correlation ratios between a backward-wave vector and a forward-wave vector
are defined as ΓΓΓΓi j ( z ) = VB j ( z ) / VF i ( z ) , and represent at the location z = 0 of each V-DUT port,
either the value of a diagonal scattering-matrix element Sii( for i = j ) , or the value of an off-diagonal
scattering-matrix element Si j( for i ≠ j ).

Most remarkably, the complex vectors VFi( z ) , and VBj( z ) , and the mutual complex correlation-ratios

ΓΓΓΓij( z ) , that clearly characterize the simultaneous propagation of the measurement signals, along a set of n
measurement-lines, can be expressed at any given distance z from one of the V-DUT system port (assumed

located at z = 0 ), as functions of the geometric parameters ai , bi , and δδδδi  ( i = 1, 2, . . . , n ) of the tilted-
ellipse representations of the standing-wave patterns along each of the n virtual measurement lines, and of the

polar angle ϕ ξ ζ ( z ) = arctan( ζ / ξ ) of the tilted-ellipse radius-vector (Figure 2) .
The geometric parameter ai of each tilted-ellipse measures the length of its major semi-axis, while the

geometric parameter bi measures the length of its minor semi-axis. Similarly, the angular parameter δδδδi

measures the tilt-angle of each ellipse major axis, relative to the abscissa-axis ξ of the 2D ( ξ , ζ ) planar-
Cartesian reference-frame used. The geometric distance z is assumed to be increasing on each virtual line in
positive value, from the z = 0 line-end connected to one of the multiport-system ports, towards the line-end
connected to either the measurement signal-source, or to an auxiliary load.

2. Advantages of Measurement- Simulations.
Clearly, very significant time and cost savings may be attained by simulating S-matrix experimental

measurements, when the system under simulated test has a very large number of ports ( n > 4 ), and possibly
also a very large number of different propagating modes. In such cases, the design and hardware-integration of a
physical Multiport Vector Network Analyzer, and the execution of the required numerous, and labor-intensive
data-acquisitions, would be prohibitively expensive and highly impractical. Quite to the contrary, the
measurement-simulation method described here makes now possible to even consider (as just a representative
example) the simulation of the multidimensional-scattering-matrix measurements required to evaluate the
radiation-pattern of a dual-polarization, electronically-steered phased array, set-up in view of a near-field
scanning system (Figure 1). Indeed, using the here described new method, such simulation would even be
practically feasible, if the array were to be simulated as having no beam-forming network, but being rather
directly excited, by connecting each of its many elements to a different input virtual-line.
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3. Simulation of the Measurement Lines.
The virtual measurement-lines, that are simulated as being connected to the various ports of the multiport

microwave system under test (the V-DUT), must be assumed to be lossless and uniform, to assure that both the
forward-waves and the backward waves propagate with unattenuated constant-amplitude, and linear phase-
evolution along the length of each line. Further, the physical configurations of each virtual transmission line,
and the shape and size of its cross-section must be quantitatively defined, to be precisely consistent with the
geometry of the corresponding V-DUT system port. The physical type of each measurement-line, and the shape
and size of its cross-section need not be identical to that of any other line, but may rather be arbitrarily different,
as required to be consistent with the geometry of the corresponding system port. Further, the physical layout and
geometry of the signal-coupling means of the measurement-signal source to the corresponding line must be
selectively simulated for different lines, so that the wave-mode of both the forward-wave and the backward
wave be the one specifically required for the excitation of the corresponding V-DUT port.

Also, either the frequency of the measurement-signal must be set higher than the cut-off of the selected
fundamental mode, and lower than the cut-off of the next-higher mode, or a mode-filter must be introduced at
the output of the signal-source, if the wave-mode required by the simulated measurement is not the fundamental
mode of the specific measurement-line.

The simulation of different measurement-line types, propagating different wave-modes automatically makes
the multidimensional scattering matrix obtained a Generalized Scattering Matrix, that is normalized at each port
of the V-DUT to the wave-impedance value of the specifically-selected common wave-mode of both the line
forward-wave and the line backward-wave.

Finally, an impedance-matched attenuator must be simulated as being inserted between the signal-source and
the virtual measurement-line, to introduce an attenuation in the order of 30 - 40 dB immediately at the line
input. This expedient prevents any simultaneous impedance-mismatch affecting both ends of a measurement-
line from creating a double-reflection pattern between the two line ends. As generally known, such double-
reflections create a frequency-selective, resonant standing-wave pattern along the affected measurement line. A
line-input attenuator may easily be simulated in the form of a short slab of lossy dielectric material, having the
ratio of its complex relative-permeability µµµµR to its complex relative permittivity εεεεR equal to the square of the

line wave-impedance. Such slab of dielectric material, with complex relative-permeability µµµµR = µµµµR’ + j  µµµµR”
and complex relative-permittiviity εεεεR = εεεεR’ + j  εεεεR” must be inserted orthogonally to the line axis,
immediately at its input port.

4. Least-Squares-Fitting of the Ellipses.
The Cartesian coordinates ξ , ζ of each tilted-ellipse representation of a standing-wave pattern respectively

display the real, and the imaginary components of the electromagnetic field, as computed by the Maxwell solver
used within the inner region of the corresponding virtual measurement-line. The complex values of the
standing-wave pattern along each line are however only available on the nodes of the 2D or 3D mesh used by
the solver to discretize the domain of the solution. Clearly the mesh nodes are however not necessarily aligned
along the axis of the line, and further even the complex field-values computed by the solver on the mesh-nodes
are known to be only approximate. Fortunately, the previously reported rigorous analysis [1] provides the
fundamental a-priori knowledge of the fact that the correlation between the real and imaginary field-
components can be exactly represented by the parametric equations of a perfect tilted-ellipse. This fundamental
result provides a powerful capability for very substantially reducing the adverse effects of both the mesh
discretization, and the finite accuracy of the computed field solutions.
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Indeed, theoretically-unlimited accuracy-enhancements may be attained by performing a 2D Least-Squares
fitting of the tilted-ellipse ξ and ζ coordinates to the computed field-values, using the parametric equations of a
perfect tilted-ellipse, and by progressively increasing the number of input field-values.

5. Iterative Accuracy Enhancement.
The magnitude of the accuracy enhancement, obtained by using any suitable tilted-ellipse Least-Squares-

Fitting algorithm, becomes obviously increasingly larger if increasingly larger numbers of computed field
values are collected and used as the algorithm input-data. The attained accuracy of the result may then be
measured by computing the residual least-squares error [1], that globally expresses the distance of the computed
best-fit ellipse from the set of field values used as input data. This possibility of progressively enhancing the
accuracy of the tilted-ellipse fit in terms of its geometric parameters, suggests the convenience of using an
iterative procedure, that cyclically increases the number of EM field-values used as input data, and compares at
every step of the iteration the last values of the residual least-squares error, and the last values of the ellipse
geometric parameters, to the corresponding values obtained from the previous iteration cycle. Clearly, a
criterion may be defined for terminating the iteration process, when either the residual least-squares error does
no-longer substantially decrease, or the geometric parameters of the best-fit tilted-ellipse obtained no-longer
substantially change.

6. Evaluation of Relative Solver-Accuracy.
Most remarkably, the size of the best-fit  tilted-ellipse residual least-squares error clearly provides a measure

of the accuracy of the Maxwell solver used. The relative accuracy of different Maxwell solvers may then be
evaluated, by running identical simulations of the same multiport microwave system using different solvers, and
by comparing the progressive evolutions of the residual least-squares errors, and of the tilted-ellipse geometric
parameters, obtained by using identical numbers of EM input field-values, at every step of identical cyclic-
iteration procedures.

A tilted-ellipse Least-Squares-Fitting algorithm has already been developed, specifically for this application,
and was already described in [1]. That previously-developed Least-Squares-Fitting algorithm described in [1] is
however specifically intended for fitting a tilted-ellipse to a given set of field-values, with the restriction that the
resulting ellipse be centered on the origin of the ( ξ , ζ  ) Cartesian reference-frame.

Any other Least-Squares-Fitting algorithm may however be used, and in particular any of the algorithms that
fit a tilted-ellipse centered at any arbitrary point of the ( ξξξξ , ζζζζ ) Cartesian plane. All such algorithms are
notoriously more computationally-intensive, due to the requirement of computing, besides the lengths of the two
semi-axes a and b , and of the tilt-angle δδδδ , also the Cartesian coordinates ξξξξ and  ζζζζ of the ellipse center.

The use of such Least-Squares-Fitting algorithm, in the comparative evaluation of the relative accuracy of
different solvers, may however reveal the existence in either or both field-solutions of possible bias errors .
Such errors would be evidenced by a shift of the ellipse center from the origin, and would be measured by the
length of the ellipse-center shift, resulting from using equal-sized sets of input field-values computed by using
different alternative solvers.
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7. From Geometric Parameters to Electromagnetic Vectors.

Each of the n tilted ellipses that represent the standing-wave patterns along the various simulated
measurement-lines is characterized by its three geometric parameters: a) the major semi-axis a , b) the minor

semi-axis b , and c) the tilt-angle δδδδ .
Five other geometric parameters must also be considered in each of the tilted-ellipse representations: 1. the

Cartesian coordinates x ( z ) and  y ( z ) of the ellipse points, displayed along the ellipse major and minor

axes; 2. the polar angle ϕ ξ ζ ( z ) relative to the rotated Cartesian axes ξξξξ and ζζζζ ; 3. the polar angle ϕ x y ( z )
relative to the non-rotated Cartesian axes x and y ; and 4. the independent angular-parameter θ ( z ) used in the
two parametric equations of a non-tilted ellipse, in the x , y reference-frame. Those eight geometric parameters
are all clearly identified in Figure 2 , that also shows the most well-known and classic graphic construction of a
centered, non-tilted ellipse displayed on the x ,   y axis-system.

The computation of the elements of the multi-dimensional scattering matrix of a multiport system under
simulated test (the V-DUT) requires that those eight geometric parameters of each ellipse be correlated to the
complex values of the forward-wave vector VF i ( z ), of the backward-wave vector VB i ( z ), and of the

corresponding wave-correlation-ratio ΓΓΓΓi j ( z ). Clearly, the eight geometric parameters and the three complex
electrical vectors are all functions of the geometric distance z , measured along the axis of each virtual line,
starting from the locations z = 0 of its V-DUT port. Further, the electrical distance from that V-DUT port,

expressed by ψ ( z ) = 2 π z / λ , must also be considered, as it determines the linear evolutions of the phase-
angles of the forward-wave vector VF i ( z ) , of the backward-wave vector VB i ( z ), and of the mutual wave-

correlation-ratio ΓΓΓΓi i ( z ) .

A mutual correspondence must obviously be established between the points( ),ξ ζ around each tilted-

ellipse, and the geometric distance z from the V-DUT port, along the corresponding virtual measurement-line.
The m field-values of the standing-wave pattern, used as Least-Squares-Algorithm inputs, must correspond to
known values z i of the z-coordinate, along each measurement-line, and those z-coordinate values must be

associated with the points( ),ξ ζ of the tilted-ellipse that are closest to the points ( ),i iξ ζ that represent the

m field-values, used as inputs for the Least-Squares Algorithm.

Those tilted-ellipse points are defined as the intersections of the ellipse with the straight line, orthogonal to

the x-axis, that runs through the points ( ),i iξ ζ that represents each of the input field-values. The distance r

between the points ( ),i iξ ζ and ( ),ξ ζ  obviously measures the local deviation ε i , of each point

( ),i iξ ζ  , from the tilted-ellipse, at the intersection with the local normal to the x-axis (Figure 5).
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The use of input field-values represented by points ( ),i iξ ζ , obtained at equally-spaced points z i along

the z-coordinate of each given measurement line, is quite clearly very advantageous, as such points imply a
linear dependence of the local values of the phase-angles of both the forward-wave and backward-wave vectors
VF i ( z i ) , and VB i ( z i ) , as functions of the geometric-distance z-coordinate.

8. Parametric Equations of the Tilted Ellipse.
The parametric equations of a centered, non-tilted ellipse are simply expressed by:

( )x a cosθ = θ (1) and ( )y b sinθ = θ (2)

The two parametric expressions (1) and (2) translate to mathematical terms the classical geometric
construction of a non-tilted ellipse shown in Figure 2 , where the ellipse is centered at the origin of the x , y
reference-frame. In that classical geometric construction, two circles are first drawn, both centered at the origin,
one with radius equal to the major semi-axis a , and respectively with radius equal to the minor semi-axis b .

Those two circles are then intersected at the points Q and R by a single radial line through the origin, drawn

at an angle θ  relative to the abscissa x-axis. The point P of the centered, non-tilted ellipse that corresponds to

the angular parameter θ  is then obtained as the intersection of the line through point Q orthogonal to the x-
axis, and the line through point R orthogonal to the y-axis.

The parametric equations of a the tilted-ellipse, with major semi-axis a , minor semi-axis b , and tilt-angle δδδδ
, centered at the origin of the  ξξξξ ,  ζζζζ Cartesian axes, are expressed by:

( ) ( ) ( )acos cos b sin sinθξ = δ θ + δ θ (3)

( ) ( ) ( )bcos sin a sin cosθζ = δ θ − δ θ (4)

where θ  is the ellipse angular-parameter, measured counter-clockwise starting from the x-axis, on the right-side

of the ellipse major semi-axis a . As clearly shown in Figure 2 , the angle θ  is however obviously not the polar

angular-coordinate ϕ ξ ζ of the point ( ),ξ ζ  , also measured counter-clockwise , but from the  positive ξ - axis.

The angle θ  is also not the polar angular coordinate ϕ x y of the point ( ),x y , also measured counter-

clockwise, from the positive x-axis , and related to the angle θ  by the transcendental trigonometric expression:

( )x y
y b sinarctan arctan arctan tan
x a cos

   θϕ = = = ρ θ   θ   
(5)
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The parametric equations (3) and (4) of a tilted-ellipse may be directly derived from the corresponding
parametric equations (1) and (2) of a centered, non-tilted ellipse, by applying a coordinate transformation that
rotates the two ellipse axes x and  y by the tilt-angle δδδδ . We assume here by convention the tilt-angle δδδδ to be
positive in the clockwise rotation-sense.

The coordinate rotation may either be expressed by using a complex notation, as given by:

( ) ( )[ ] ( ) ( )jz j z y yr e x cos sin x sin cos− δ+ + + += ξ ζ ⋅ = δ δ − δ δ (6)

or equivalently in matrix-vector form , as shown by:

( )
( )

( )
( )

cos sin x

sin cos y

z z

z z

δ δξ
= ⋅

− δ δζ
(7)

9. Vector-Addition Construction of the Tilted Ellipse.
The above-described classical geometric construction of the non-tilted ellipse has been correlated with the

geometric construction of a centered, tilted-ellipse that is automatically generated by the vector-addition of a
forward-wave vector VF i ( z ) , and of a backward-wave vector VB i ( z ) , while those two waves propagate,
in opposing directions, along each virtual measurement-line connected a port i of the V-DUT multiport
microwave-system under simulated test.

This second geometric construction is shown in Figure 4, and is characterized by the fact that, in a snapshot
of the complex standing-wave field-pattern along each virtual measurement-line, the vector that represents the
forward-wave rotates in phase in counter-clockwise sense, for increasing geometric distance z , starting from the
z = 0 line-end connected to the system port, towards the line-end connected to either the signal-source, or an
auxiliary load.  Similarly, the vector that represents the backward-wave rotates in phase clockwise for increasing
distance z from the V-DUT system port. The opposing directions of those two phase rotations are the obvious
consequence of the fact that while the forward-wave increasingly anticipates in phase toward the source, the
backward-wave increasingly lags in phase toward the source.

The process of vector-addition of a counter-clockwise rotating forward-wave vector VF i ( z ) and a
clockwise rotating backward-wave vector VB i ( z ) , along each virtual measurement-line, makes the tip of the
vector-sum V i ( z ) = VF i ( z ) + VB i ( z ) trace the tilted-ellipse as an Hypotrochoid [5] (Figure 5).

The now-established mutual correlation between the two graphic constructions of a centered, tilted-ellipse
leads to the determination of the mutual correspondence between the representative points ( ),ξ ζ  , aligned

around each ellipse, and the geometric locations z along the corresponding virtual measurement-line. Indeed, we

may easily conclude from Figure 5 that the radius-vector to each ( ),ξ ζ  ellipse-point, measured from the

origin of the ( ),ξ ζ  system, represents the vector-sum V i ( z ) of a forward-wave vector VF i ( z ) , and the

corresponding backward-wave vector VB i ( z ) .
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Further, the length of such radius-vector measures the local magnitude of the standing-wave field at the
corresponding geometric locations z along the measurement lines. Then clearly, the two ends of the ellipse
major-axis cyclically correspond to the locations where the magnitude of the standing-wave-field is a maximum,
while the two ends of the ellipse minor-axis cyclically correspond to the locations where the magnitude of the
standing-wave-field is a minimum. Those are the geometric locations z M i and z m i where the forward-wave
vector VF i ( z ) , and the corresponding backward-wave vector VB i ( z ) respectively add in phase (at a field-
maximum z M i ), and subtract in phase-opposition (at a field-minimum z m i ), so that for those z-locations we
can write the two expressions:

( ) ( )F i B ia V z V z= + (8)

( ) ( )F i B ib V z V z= − (9)

and deduce from those expressions that the magnitudes of the forward and backward field-vectors are given by:

( )1( )
2F iV z a b= + (10)

( )1( )
2B iV z a b= − (11)

while the local value of the magnitude of the mutual wave-correlation-ratio is expressed by

1( )
1i i

a bz
a b

− − ρΓ = =
+ + ρ

(12)

where ρ  measures the aspect ratio = b aρρρρ  of the ellipse minor semi-axis b  to its major semi-axis a .

10. Expressions of the Inner-Angles.
As clearly shown in Figure 5 , the Vectors VF i ( z ), VB i ( z ), and the Vector-Sum V i ( z )

constitute the three sides of a plane triangle, so that the Law of Cosines of plane triangles may be applied to

compute the three inner angles α , β , and γ , that are respectively opposite to the triangle sides σ , υ , and τ :

2 2 2 2

2
2 2 2 2

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) 1 cos 1 tan
( )

R IV z V z V z z z

y zx z y z x z a
x z

σ = = + = ξ + ζ =

 
= + = + = θ + ρ θ 

 

(13)
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( )1
2B

sinV ( z ) a b
sin

βυ = = − = σ
α

 . . . and . . . (14)

( )1 sin( )
2 sinFV z a b γτ = = + = σ

α
(15)

The expressions (13) to (15) of the cosines of the inner-angles α , β , and γγγγ of that plane triangle are then:

( )
2 2

2 2 21 1
2 2

cos
 τ υ σ   α = υ + τ − σ = + −    υ τ υ τ τ     

(16)

( )
2 2

2 2 21 1
2 2

cos
    τ σ υ β = σ + τ − υ = + −   σ τ σ τ τ     

(17)

( )
2 22

2 2 21 1
2 2

cos
    τ σ υ γ = σ + υ − τ = + −   σ υ σ υ τ τ     

(18)

The expressions (16) to (18) of the three inner-angle cosines may be cast in the form of explicit functions of
the tilted-ellipse angular-parameter θ , by substituting in the respective second forms the sixth form of (13) ,
and the second forms of (14) and (15).

Quite clearly, only the ratio σ / τ is actually a function of the tilted-ellipse angular-parameter θ , in the

second forms of the three inner-angle cosines (16) to (18) , while the ratio υ / τ is actually a constant that

expresses the magnitude of the wave-correlation-ratio | Γi i | , as given by the expression (12).
Those substitutions lead, after appropriate simplifications, to the following expressions (19) to (21) of the

three inner-angle cosines, cast in the form of explicit functions of the tilted-ellipse angular-parameter θ :

2cos cosα = − θ (19)

( )
( )

2

2 2

1 1

1 1

sin
cos

sin

− − ρ θ
β =

− − ρ θ
(20)

( )
( )

2

2 2

1 1

1 1

sin
cos

sin

− + ρ θ
γ =

− − ρ θ
(21)

Most remarkably, the expression (19) of cosine α shows that the angle α linearly increases (or decreases) at

twice the rate of the ellipse angular-parameter θ , consistently with the span of the angle α extending between
the Forward-Wave vector VF i ( z ) , that linearly leads in phase, and the Backward-Wave vector VB i ( z ) ,
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that linearly lags in phase, for increasing distance z from the z = 0 line-end connected to the V-DUT port,
towards the line-input connected to the signal-source.

11. Expressions of the Forward-Wave and Backward-Wave Phase-Angles.
The magnitudes of the Forward-Wave Vectors | VF i ( z ) | , and Backward-Wave Vectors | VB i ( z ) | ,  as

well as the magnitudes of the Wave-Correlation-Ratios | Γi i | , and | Γi j | are all constant along each of the
virtual measurement-lines, because of those lines being simulated uniform and lossless. The assumptions of
uniformity and losslessness leads to the very simple expressions (10) to (12) , that directly relate those
magnitudes to the lengths of the two tilted-ellipse semi-axes a and b , and to the tilted-ellipse aspect-ratio ρ  .

Quite to the contrary, the phase-angles ϕ F ( z ) of the Forward-Wave, and ϕ B ( z ) of the Backward-
Wave are both linear functions of the distance z from the line-end connected to a V-DUT port :

( ) ( ) 20F Fz zπϕ = ϕ +
λ

(22)

( ) ( ) 20B Bz zπϕ = ϕ −
λ

(23)

while the phase-angle of the Wave-Correlation-Ratios Γi i is given by:

( ) ( ) ( ) ( ) 40B Fz z z zΓ Γ
πϕ = ϕ − ϕ = ϕ −

λ
(24)

The a-priori knowledge of the linear dependence of the phase-angles ϕ F ( z ) , and ϕ B ( z ) , expressed

by (22) and (23) , provides a simple way to compute the values of the two phase-angles ϕ F ( 0 ) , ϕ B (0 ) ,

and of the phase-angle ϕ Γ ( 0 ) , at the locations z = 0 of each V-DUT port, that are required to obtain the

values of the complex diagonal elements S i i = Γi i , and of the off-diagonal element S i j = Γi j of the V-DUT

scattering matrix. The determination of the phase-angles ϕ F ( 0 ) , ϕ B (0 ) is indeed simple, provided at least

one value of the phase-angles ϕ F ( z ) , and ϕ B ( z ) is known, at a known location z = z i of each line.

The values of the phase-angles ϕ F ( z ) , and ϕ B ( z ) at any location z may however be different,
depending upon which relatively-arbitrary ellipse-reference-point is used. It is therefore necessary to distinguish
among those different values, by using different symbols. In the following discussion, the symbols ϕ F ξ ζ and

ϕ B ξ ζ will represent the phase-angles ϕ F, and ϕ B , measured counter-clockwise and respectively clockwise,

from the positive ξ - axis. Similarly,  the symbols ϕ F x y and ϕ B x y will represent the phase-angles ϕ F, and

ϕ B , measured counter-clockwise and respectively clockwise , from the positive x - axis.

The known expression (20) of the cosine of the inner-angle β is then quite useful for expressing the phase-

angles ϕ F x y , as function of both the polar-angle ϕ x y of the point ( ),x y , and the inner-angle β .
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Indeed, as is easy to see in Figure 6, within the first and third quadrants of the ellipse, where
0 2 3 2and≤ θ≤ π π ≤ θ≤ π , the phase-angle ϕ F x y of the Forward Wave VF i ( z ) , as seen in

the x- y  reference-frame, appears to be expressed by:

1Fx y x yϕ = ϕ + β (25)

Similarly, as is easy to see in Figure 7, within the second and fourth quadrants of the ellipse, where
2 3 2 2andπ ≤ θ≤ π π ≤ θ≤ π , the phase-angle ϕ F x y of the Forward Wave VF i ( z ) , as seen

in the x- y  reference-frame, appears to be expressed by:

2Fx y x yϕ = ϕ − β (25a)

The two expressions (25) and (25a) may however be reduced to just the expressions (25), by defining the
angle β as being oriented from the Forward-Wave Vector VF i ( z ) ( represented by the triangle-side τ ),

towards the Vector-Sum V i ( z ) ( represented by the triangle-side σ ), and by considering it to be positive
when extending in counter-clockwise sense,  and to be negative when extending in clockwise sense.

As a consequence of that convention, the inner-angle β becomes automatically positive within the first and
third quadrants of the ellipse, and negative within the second and fourth quadrants, thus making the use of two
different expressions unnecessary. The phase-angle ϕ F x y may then be expressed by the single expression (25).

 Further, that sign-convention is also consistent with the expression of the inner-angle β as arctan( tan β ),

where the expression of tan β may be simply derived from that in (20) of cos β,  ad is given by :

( )
( )

2

2
11

1 1
sin coscos

tan
cos sin

− ρ θ θ− β
β = =

β − − ρ θ
(26)

The above-established sign-convention for the inner-angle β is further also consistent with the other

expression of tan β , that is obtained by first solving the expression (5a) , of the tangent of the angle ϕ x y , for

the ellipse aspect-ratio ρ :

x y
y b sintan tan
x a cos

θϕ = = = ρ θ
θ

(5a)

x ytan
tan

ϕ
ρ =

θ
(5b)

and by substituting the expression (5b) of the ellipse aspect-ratio ρ in the expression (26) of tan β . That
substitution leads, with appropriate simplifications, to the expression:
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( )
2

1

1
1 1

x y

x y
x y

x y x y

tan
sin cos tan tantan

tan tan
tan tan tan

sin
tan

ϕ 
− θ θ  θ − ϕθ β = = = θ − ϕ

ϕ + θ ϕ 
− − θ θ 

(26a)

The expression (26 b) of tan β shows that the inner-angle β is actually correctly expressed by :

x yβ = θ − ϕ (25a)

which clearly confirms that indeed the phase-angle ϕ F x y of the Forward-Wave vector VF i ( z ) , as seen in
the x-y reference-frame, is identical to the tilted-ellipse angular parameter θ . Figure 9 shows overlay-plots of

the inner-angle β , with its sign set by the given convention, of the angle ϕ x y , and of the phase-angle ϕ F x y ,

all three angles being displayed as functions of the tilted-ellipse angular-parameter θ ( in all such graphics

displays, the numerical values of the tilted-ellipse parameters are assumed to be: ρ = ¼  , and δ = 30o ).

A further confirmation of  the expression (25) of the phase-angle  ϕ F x y may be obtained by computing the
expressions of its sine , its cosine, and its tangent given by:

F x y x y x y x ysin cos( ) sin cos cos sinϕ = ϕ + β = ϕ β + ϕ β (27)

F x y x y x y x ycos cos( ) cos cos sin sinϕ = ϕ + β = ϕ β − ϕ β (28)

1
x y

F x y
x y

tan tan
tan

tan tan
ϕ + β

ϕ =
− ϕ β

(29)

The expressions (27) to (28) may also be cast in the form of explicit functions of the ellipse angular-
parameter θ , by substituting the expressions of the sine, cosine, and tangent of the polar angle ϕ x y :

2 2 2 21 1
x y

y b sin tansin
a cos tan tan

θ ρ θϕ = = =
σ θ − ρ θ − ρ θ

(30)

2 2 2 2

1

1 1
x y

x a coscos
a cos tan tan

θϕ = = =
σ θ − ρ θ − ρ θ

(31)

x ytan tanϕ = ρ θ (32)

and that of the sine, cosine, and tangent of the inner-angle β , the being cosine given by (20) , and the sine by:

2
2 2

11
1 1

( ) sin cossin cos
( ) sin

− ρ θ θβ = − β =
− − ρ θ

(33)
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Those substitutions lead, after appropriate simplifications, to expressions of the sine, cosine and tangent of
the phase angle ϕ F x y of the Forward Wave VF i ( z ) , as seen in the x-y reference-frame, as explicit

functions of the tilted-ellipse angular-parameter θ  :

2 2
2

2 2
1 1

1F x y
( ) sinsin tan sin

tan
− − ρ θϕ = θ = θ

+ ρ θ
(34)

2 2
2

2 2
1 1

1F x y
( ) sincos cos

tan
− − ρ θϕ = = θ

+ ρ θ
(35)

F x ytan tanϕ = θ (36)

Most remarkably, the graphic display in Figure 10 , of the transcendental functional relations (34) to (36),
that express the sine, cosine, and tangent of the phase angle ϕ F x y of the Forward-Wave Vector, as explicit

functions of the tilted-ellipse angular-parameter θ , clearly shows that the phase angle ϕ F x y is, in the x-y
reference-frame, indeed identical to the angular-parameter θ :

Fx y x yϕ = ϕ + β = θ (37)

12. The Tilted-Ellipse Cardinal Points.
The angles ϕ F x y and θ are then both zero on the positive-side of the x-axis, and in particular at the

positive-end of the major semi-axis a , where the magnitude | V i ( z ) | of the standing-wave pattern is a

maximum. The positive-end of the major semi-axis a , where ξ = a cos δ and ζ = - a sin δ , corresponds then
to the locations z = z M i of each virtual measurement-line where the magnitude | V i ( z ) | of the standing-
wave pattern is a maximum, because of the Forward-Wave Vector VF i ( z ) , and the Backward-Wave Vector

VB i ( z ) locally adding in-phase. Similarly, the angles ϕ F x y and θ are both equal to π on the negative-side

of the x-axis, so that the negative-end of the major semi-axis a , where ξ = - a cos δ and ζ = a sin δ ,
corresponds to the locations z = z M( i+1) of each virtual measurement-line, where the Forward-Wave Vector
VF i ( z ) , and the Backward-Wave Vector VB i ( z ) are again adding in-phase, because VF i ( z ) having

rotated counter-clockwise by + π , and VB i ( z ) having rotated clockwise by - π , relative to z = z M i .

The distance from point z = zMi to point z = zM( i+1) is quite obviously equal to one-half of the known

wavelength λ of the common forward- , and backward-wave mode, used for exciting the given V-DUT port.

Further, the angles ϕ F x y and θ are both are equal to π/2 , and respectively 3/2 π at the positive and
negative ends of the ellipse minor semi-axis b , where y = ± b and the magnitude | V i ( z ) | of the standing-
wave pattern is a minimum.
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The positive and negative ends of the minor semi-axis b , where ξ = ± b sin δ and ζ = ± b cos δ ,
corresponds then to the locations z = zmi and z = zm(i+1) of each virtual measurement-line, where the
magnitude | V i ( z ) | of the standing-wave pattern is a minimum, due to the Forward-Wave Vector VF i ( z ) ,
and the Backward-Wave Vector VB i ( z ) locally adding in phase-opposition.

13. Angular-Parameters and Electric-Distances.
The positive and negative ends of the major and minor semi-axes are therefore cardinal points of the tilted-

ellipse, where the values of the angles ϕ F x y and θ have very simple known values of either zero or a integer

multiple of π/2 . Unfortunately, the corresponding geometrical locations z = zMi and z = zmi , along each
virtual measurement-line, can not be accurately determined, because of the local slope of the standing-wave
field-magnitude  | V i ( z ) | being zero at both a maximum, and at a minimum. Indeed, the only the ( ),ξ ζ  or

( ),x y  points of the tilted-ellipse, that correspond to known geometrical locations along each virtual

measurement-line, are the n points identified by θ =   θ ( z i ) (for  i = 1, 2 … n ) , that are aligned on the same

straight-lines through the origin, with the n points that represent, in the ( ),ξ ζ  reference-frame, the standing-

wave field-values used as inputs for the least-squares ellipse-fitting algorithm.

The n ( ),ξ ζ  points, used as inputs for the least-squares ellipse-fitting algorithm, are those obtained from

the n known, equidistant geometrical-locations z i , selected along a segment of virtual measurement-line,
sufficiently removed from the V-DUT port so that the evanescent higher-order modes that affect the line-to-port
transition are decayed to negligible magnitudes. Those n ( ),ξ ζ  points are identified by n values θ ( z i ) of

the tilted-ellipse angular-parameter θ , and by the n corresponding values ψ ( z i ) = ( 2 π z i ) /λ of the
electrical distance, from the specific V-DUT port at the downstream line-end.

As a consequence, the n ( ),ξ ζ  points of the tilted-ellipse that are aligned on the same straight-lines

through the origin and very close to those representing the least-squares ellipse-fitting algorithm inputs, are
identified by the same n values θ ( z i ) of the angular-parameter θ , and may be assumed to closely correspond
to the same n known, equidistant geometrical-locations z i . Those ellipse points provide then the most accurate

one-to-one mapping of all values of the angular-parameter θ , onto all geometrical locations z , and onto all the

corresponding values of the electrical distance ψ ( z  ) , including in particular those of the four cardinal points,
at the positive and negative ends of the major and minor  ellipse-axes.

That one-to-one mapping of all values of the angular-parameter θ , onto all geometrical locations z along
each of the measurement-lines, leads then to simple, obvious expressions of the values of the phase-angles of
the forward and backward wave ϕ F ( 0 ) , ϕ B (0 ) , and of the phase-angle of the complex wave-correlation-

ratios ϕ Γ ( 0 ), at the locations z = 0 of each V-DUT port:

( ) ( ) 20F x y F x y i iz zπϕ = ϕ −
λ

(38) ( ) ( ) 20B x y B x y i iz zπϕ = ϕ +
λ

(39)
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Work in progress:
 -----------------------------------------

Expression of the Phase-Angles ϕFξζ ( z ) , and  ϕBξζ ( z ) of the FW and BW.
(Work in progress: Check the expressions in the following paragraphs !)

Further, it is easy to see in Figure 4 , that, the phase angle ϕ F ( z ) of the Forward Wave VF i ( z ) , in the

ξξξξ - ζζζζ  reference-frame is expressed by:

( ) ( ) ( ) ( ) ( )F xyz z z z zξζ ξζϕ = ϕ + β = ϕ − δ + β (40)

Similarly, it is easy to see in Figure 4 , that the phase angle ϕB ( z ) of the Backward Wave VB i ( z ) in
the ξξξξ , ζζζζ  reference-frame is expressed by:

( ) ( ) 2B z zξζ ξζ ϕ = − ϕ + β + δ  (41)

-----------------------------------------
Line-to-Line Correlation.

Quite obviously, if i ≠ j the expressions (9) and (10) would become:

( )1( )
2F i i iV z a b= + (9a)

( )1( )
2B j j jV z a b= − (10a)

and the expression (11) would then become:

1 1
( )

1 1
B j j j j j j

i j i j
i i i i iF i

V a b a
z

a b aV

− − ρ − ρ
Γ = = = = χ

+ + ρ + ρ
(11a)

where the variable χχχχ measures the ratio  = j i
a aχχχχ  of the two ellipses major-axes aj and ai , and represents

a scaling-factor relating the tilted-ellipse of line j to that of line i .
The latter points are characterized by the geometric distance z from the system port, and by the

corresponding electrical distance ψ(z) = 2 π z /λ  .
-----------------------------------------
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14. Conclusions.

This paper provides a fairly detailed description of a new method that has the capability of simulating
calibrated-measurements of complex, multi-dimensional scattering-matrices. The method described does not
require the simulation of a full physical, multi-port, automated vector network-analyzer (VANA). The only
requirement is the extension of the domain of a complex EM-field solution to include the inner regions of short
lengths of  virtual measurement transmission-lines (or waveguides). The virtual measurement-lines are assumed
to be uniform, and lossless, but not-necessarily non-dispersive. Those virtual lines are simulated as being
connected to the multiport system under test, exactly as physical measurement-lines would be connected, in an
experimental vector network analyzer set-up. At every step of the simulated measurement-cycle, a stepped-
frequency sine-wave signal is assumed to be fed towards one of the ports of the system under test. During the
full measurement-cycle the stepped frequency sine wave excitation signal is progressively switched towards a
different port of the system under test, through a different virtual measurement-line. Uncalibrated values of the
scattering parameters are then obtained by first extracting the values of the real and imaginary components of
the standing-wave field, along each of the virtual measurement lines, obtained from a complex electromagnetic-
field Maxwell-solver.

The field samples are extracted at a set of line locations spaced at regular distance increments, from the
reference point that marks the location of a test-system port. The a-priori-known tilted-ellipse shape of the 2D
display of the imaginary standing-wave-field component, as function of the corresponding real component, is
then used in a least-squares ellipse-fitting algorithm, that computes the lengths of the two ellipse semi-axes, and
the value of the tilt-angle of the ellipse major axis, with respect to the abscissa-axis.

The set of equidistant line locations, where the real and imaginary components of standing-wave-field are
extracted, must cover a line-segment that is sufficiently removed from the system port, so that the
superimposed, local evanescent higher-modes, that affect the line-to-system transition, are decayed to very low
magnitudes, thus assuring that only the single mode, required for the excitation of the given specific port, is
propagating where field-data are being collected. That line segment should cover a number of line- wavelenghts.

The three geometric parameters of the tilted-ellipse that corresponds to each virtual measurement-line,
obtained from the least-squares ellipse-fitting algorithm, may be directly used to compute the amplitudes and
phases of the forward-wave- , and backward-wave-vectors. The new simulation method extracts thus the
complex values of the two eaves that propagate, in opposing directions, along each measurement-line,
performing thus a wave-extraction-function that would require, in an experimental setting, a hardware vector-
reflectometer inserted along each line. The wave-correlation-ratios between each backward-wave-vector and all
forward-wave-vectors represent either uncalibrated reflection coefficients, or uncalibrated transmission
coefficients, depending upon whether the two waves selected propagate along the same virtual measurement-
line or along different lines. Multi-port calibration procedures can be also simulated, by replacing the system
under test with an sufficient number of calibration standards, each having a postulated scattering-response.

The physical cross-section geometry of the virtual measurement-lines, and the type of complex field-solver
used are completely arbitrary, and different solvers may be used while repeating the same simulation. The
relative accuracy of the various solvers used may then be determined, by mutually comparing the residual least-
squares errors, and the system-error descriptions generated by the calibration procedure, both errors being
obtained using arrays of input EM-field values, having equal numbers of elements.
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APPENDIX - 1

Graphic Displays of the Tilted-Ellipse Representation
of Standing-Wave Patterns

( Including the Vector-Addition Triangle
and its Inner-Angles α , β , and γ  ).
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Figure Captions.
FIGURE 1 - Phased-Array in a Near-Field Scanner.

FIGURE 2 - Analytic Geometry of the Tilted Ellipse.

FIGURE 3 - The Tilted-Ellipse Representation of a Standing-Wave Pattern.

FIGURE 4 - The Tilted-Ellipse Representation of a Standing-Wave Pattern:  Vector-Addition Triangles in the First and Third Quadrants.

FIGURE 5 - The Tilted-Ellipse Representation of a Standing-Wave Pattern:  Vector-Addition Triangles in the Second and Fourth Quadrants.

FIGURE 6 - Detail of the Vector-Addition Triangles in the First Quadrant.

FIGURE 7 - Detail of the Vector-Addition Triangles in the Second Quadrant.

FIGURE 8 - Detail of the Vector-Addition Triangles in the First Quadrant: Angle θ = ϕ x y + β .

FIGURE 9 - TBD.
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(One for Each Line)
Tilted-Ellipses

Figure 1 - Phased-Array in a Near-Field Scanner.
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Figure 2 - Analytic Geometry of the Slanted Ellipse.
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Figure 3 - The Tilted-Ellipse Representation of a Standing-Wave Pattern.
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Figure 4 - The Tilted-Ellipse Representation of a Standing-Wave Pattern.
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Figure 5 - The Tilted-Ellipse Representation of a Standing-Wave Pattern.
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Figure 6 - Detail of the Vector-Addition Triangle.
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Backward-Wave Vector Shown in Red.

Forward-Wave Vector Shown in Blue.

Figure 7 - Detail of the Vector-Addition Triangle.
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Backward-Wave Vector Shown in Red.

Forward-Wave Vector Shown in Blue.

Figure 8 - Detail of the Vector-Addition Triangle.
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1

APPENDIX - 2

Graphic Displays of the Inner-Angles α , β , γ ,

and of the Phase-Angles ϕ F , ϕ B , and ϕ Γ .
(NOTE: All Graphic Displays are Generated Assuming: ρ = ¼  , and δ = 30o ).
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Figure Captions.
FIGURE 1 - SINES OF THE INNER-ANGLES α (SOLID), β (DASHED), AND γ (DASH-DOT).

FIGURE 2 - COSINES OF THE INNER-ANGLES α (SOLID), β (DASHED), AND γ (DASH-DOT).

FIGURE 3 - TANGENTS OF THE INNER-ANGLES α (SOLID), β (DASHED), AND γ (DASH-DOT).

FIGURE 4 - ANGLE α: α1 = asin(sin α) (SOLID), α2 = acos(cos α) (DASHED), α3 = atan(tan α) (DASH-DOT).

FIGURE 5 - ANGLE β: β1 = asin(sin β) (SOLID), β2 = acos(cos β) (DASHED), β3 = atan(tan β) (DASH-DOT).

FIGURE 6 - ANGLE γ: γ1 = asin(sin γ) (SOLID), γ2 = acos(cos γ) (DASHED), γ3 = atan(tan γ) (DASH-DOT).

FIGURE 7 - INNER-ANGLES α (α2 SOLID), β (β2 DASHED), AND γ (γ2 DASH-DOT).

FIGURE 8 - SINES OF THE ANGLES ϕ x y (SOLID) AND θ (DASHED).

FIGURE 9 - COSINES OF THE ANGLES ϕ x y (SOLID) AND θ (DASHED).

FIGURE 10 - TangentS OF THE ANGLES ϕ x y (SOLID) AND θ (DASHED).

FIGURE 11 - ANGLES ϕ x y1 = asin(sin ϕ x y) (SOLID), ϕ x y2 = acos(cos ϕ x y) (DASHED), ϕ x y3 = atan(tan ϕ x y) (DASH-DOT).

FIGURE 12 - SINES OF THE ANGLES ϕ Fx y1 (SOLID) AND θ (DASHED).

FIGURE 13 - COSINES OF THE ANGLES ϕ Fx y1 (SOLID) AND θ (DASHED).

FIGURE 14 - TANGENTS OF THE ANGLES ϕ Fx y1 (SOLID) AND θ (DASHED).

FIGURE 15 - SINES OF THE ANGLES ϕ Fx y2 (SOLID) AND θ (DASHED).

FIGURE 16 - COSINES OF THE ANGLES ϕ Fx y2 (SOLID) AND θ (DASHED).

FIGURE 17 - TANGENTS OF THE ANGLES ϕ Fx y2 (SOLID) AND θ (DASHED).

FIGURE 18 - ϕ Fx y1a = asin(sin ϕ Fx y1) (SOLID), ϕ Fx y1b = acos(cos ϕ Fx y1) (DASHED), ϕ Fx y1c = atan(tan ϕ Fx y1)  ( DASH-DOT).

FIGURE 19 - ϕ Fx y2a = asin(sin ϕ Fx y2) (SOLID), ϕ Fx y2b = acos(cos ϕ Fx y2) (DASHED), ϕ Fx y2c = atan(tan ϕ Fx y2)  ( DASH-DOT).

FIGURE 20 - ϕ Fx y1a = asin(sin ϕ Fx y1) (SOLID), β1 = asin(sin β) (DASHED), ϕ x y1 = asin(sin ϕ x y) ( DASH-DOT).

NOTE: All Graphic Displays are Generated Assuming: ρ = ¼  , and δ = 30o .
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FIGURE 1 − SINES OF THE INNER−ANGLES Alpha (SOLID), Beta (DASHED), AND Gamma (DASH−DOT)
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FIGURE 2 − COSINES OF THE INNER−ANGLES Alpha (SOLID), Beta (DASHED), AND Gamma (DASH−DOT)
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FIGURE 3 − TANGENTS OF THE INNER−ANGLES Alpha (SOLID), Beta (DASHED), AND Gamma (DASH−DOT)
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FIGURE 4 − ANGLE Alpha: A1 = asin(sinA) (SOLID), A2 = acos(cosA) (DASHED), A3 = atan(tanA) (DASH−DOT)
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FIGURE 5 − ANGLE Beta: B1 = asin(sinB) (SOLID), B2 = acos(cosB) (DASHED), B3 = atan(tanB) (DASH−DOT)
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FIGURE 6 − ANGLE Gamma: G1 = asin(sinG) (SOLID), G2 = acos(cosG) (DASHED), G3 = atan(tanG) (DASH−DOT)
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FIGURE 7 − INNER−ANGLES Alpha (A2 SOLID), Beta (B2 DASHED), AND Gamma (G2 DASH−DOT)
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FIGURE 8 − SINES OF THE ANGLES Phixy (SOLID) AND Theta (DASHED)
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FIGURE 9 − COSINES OF THE ANGLES Phixy (SOLID) AND Theta (DASHED)
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FIGURE 10 − TangentS OF THE ANGLES Phixy (SOLID) AND Theta (DASHED)
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FIGURE 11 − Phixy1 = asin(SinPhixy) (SOLID), Phixy2 = acos(CosPhixy) (DASHED), Phixy3 = atan(TanPhixy) (DASH−DOT)
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FIGURE 12 − SINES OF THE ANGLES PhiF1 (SOLID) AND Theta (DASHED)

ANGULAR−PARAMETER Theta IN DEGREES

S
in

P
hi

F
1 

&
 S

in
th

20
th

 A
nn

ua
l R

ev
ie

w
 o

f 
Pr

og
re

ss
 in

 A
pp

lie
d 

C
om

pu
ta

tio
na

l E
le

ct
ro

m
ag

ne
tic

s

A
pr

il 
19

-2
3,

 2
00

4 
- 

Sy
ra

cu
se

, N
Y

   
  ©

 2
00

4 
A

C
E

S



0 30 60 90 120 150 180 210 240 270 300 330 360

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 13 − COSINES OF THE ANGLES PhiF1 (SOLID) AND Theta (DASHED)
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FIGURE 14 − TangentS OF THE ANGLES PhiF1 (SOLID) AND Theta (DASHED)
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FIGURE 15 − SINES OF THE ANGLES PhiF2 (SOLID) AND Theta (DASHED)
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FIGURE 16 − COSINES OF THE ANGLES PhiF2 (SOLID) AND Theta (DASHED)
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FIGURE 17 − TangentS OF THE ANGLES PhiF2 (SOLID) AND Theta (DASHED)
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FIGURE 18 − PhiF1a = asin(SinPhiF1) (SOLID), PhiF1b = acos(CosPhiF1) (DASHED), PhiF1c = atan(TanPhiF1) (DASH−DOT)
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FIGURE 19 − PhiF2a = asin(SinPhiF2) (SOLID), PhiF2b = acos(CosPhiF2) (DASHED), PhiF2c = atan(TanPhiF2) (DASH−DOT)
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FIGURE 20 − B1 = asin(SinB) (SOLID), Phixy1 = asin(sinPhixy), PhiF1a = asin(sinPhiF1) (DASH−DOT)
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1

APPENDIX - 3

Closed-Form Expressions of the Trigonometric Functions
of the Phase-Angles ϕF1 and  ϕF2 .

( Using the Expressions of the Vector-Addition Triangle Inner-Angles α , β , and γ   ).
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2

Closed-Form Expressions of the Trigonometric Functions of the Phase-Angles ϕF1 and  ϕF2 .

Expressions of the Tangents of the angles ϕxy and β :

x y
y b sintan tan
x a cos

θϕ = = = ρ θ
θ

(1) ( )
( ) 2

1
1 1

sin cos
tan

sin
− ρ θ θ

β =
− − ρ θ

(2)

Expressions of the Tangent of the Phase-Angles ϕF1:

( )
( )

( )
( )

( )

( ) ( )
( ) ( )

( ) ( ) ( )
( )

2

1

2

2 22 2

2 2

1
1 1

11 1
1 1

1 1 1 11 1 1

1 1 1 1 1

x y
F x y

x y

sin cos
tan

tan tan sin
tan tan

sin costan tan tan
sin

sin sintan sin tan cos
tan

sin tan tan cos sin

− ρ θ θ
ρ θ +

ϕ + β − − ρ θ
ϕ = ϕ + β = = =

− ρ θ θ− ϕ β
− ρ θ

− − ρ θ

   ρ − − ρ θ + − ρ − θρ θ − − ρ θ + − ρ θ θ   = = θ
 − − ρ θ − ρ θ − ρ θ θ − − ρ  ( )

( ) ( ) ( )
( ) ( )

( )
( )

2 2

2 22 2

2 2 2 2

1

1 11 1 1
1 1 1 1 1

sin

sinsin sin
tan tan tan

sin sin sin

 θ − ρ − ρ θ 

− − ρ θρ + − ρ − ρ − ρ θ − − ρ θ
θ = θ = θ

− − ρ θ − ρ − ρ θ − − ρ θ

(3)
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3

Closed-Form Expressions of the Trigonometric Functions of the Phase-Angles ϕF1 and  ϕF2 .

Substitution of the expression of the Aspect-Ratio ρ as Function of the Tangent of the angle ϕxy in the Tangent of β :

x ytan
tan

ϕ
ρ =

θ (1a)
2

1

1 1

x y

x y

tan
sin cos

tan
tan

tan
sin

tan

ϕ 
− θ θ θ β =

ϕ 
− − θ θ 

(2a)

Simplification of the Expressions of the Tangent of the Tangent of β :

( )
( )

( ) ( )
( )

( )

( )

22

2 2
2

2

2

2

1 1

1 1

1
1

x y

x yx y

x y x y x y

x y

x y

tan
sin cos tan tan tan sintan tan tan costan

tan
tan tan tan tan sin tan tan tan sinsin

tan

tantan tan tan
tan

tantan tan tan

ϕ 
− θ θ  θ − ϕ θ − θθ − ϕ θ θθ β = = = =

ϕ  θ − θ − ϕ θ θ − θ − ϕ θ− − θ θ 

 θθ − ϕ θ − 
+ θ =

θθ − θ − ϕ

( ) ( )
( ) ( )

( )

2 2

2 2

2

2 2

1

1
1

11

x y

x y

x yx y
x y

x yx y

tan tan tan tan
tan

tan tan tan tan tan
tan

tan tantan tan
tan

tan tantan tan tan tan

θ − ϕ + θ − θ
= θ =

  θ + θ − θ − ϕ θ
 

+ θ 

θ − ϕθ − ϕ
= = = θ − ϕ

+ θ ϕ+ θ − θ + θ ϕ

(4)
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4

Closed-Form Expressions of the Trigonometric Functions of the Phase-Angles ϕF1 and  ϕF2 .
Expressions of the Tangent of the Phase-Angles ϕ F2 :

( )
( )

( )
( )

( )

( ) ( )
( ) ( )

( ) ( ) ( )
( )

2

2

2

2 22 2

22 2

1
1 1

11 1
1 1

1 1 11 1 1

1 11 1 1

x y
x yF

x y

sin cos
tantan tan sin

tan tan
sin costan tan tan

sin

sin sintan sin tan cos
tan

sinsin tan tan cos

− ρ θ θ
ρ θ −ϕ − β − − ρ θ

ϕ = ϕ − β = = =
− ρ θ θ+ ϕ β

+ ρ θ
− − ρ θ

  ρ − ρ − ρ θ − − ρ − θρ θ − − ρ θ − − ρ θ θ = = θ
  − − ρ θ + ρ− − ρ θ + ρ θ − ρ θ θ  ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

2

22 2 2

2 2 2

1

1 1 1 2 1 1
1 1 1 1 1

sin

sin sin sin
tan tan tan

sin sin

=
− ρ θ

ρ − − ρ − ρ − ρ θ + − ρ θ ρ − − − ρ θ
= θ = θ ≠ θ

− − ρ θ − ρ − − ρ θ

(5)
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